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ABSTRACT

The use of simulation in evaluating hardware and

software design concepts for the Automatically Re-

configurable Modular Multiprocessing System (ARMMS)

is discussed. Two simulation models are described and

results obtained from simulations conducted with these

models were presented.

_TRODUCTION

Future space missions such as the earth-orbiting space

station, astronomical space observatory and numerous outer-

planet space probes will be measured in years instead of days.

Long range missions of this type will place increased require-

ments on the onboard digital computing equipment, particularly

in the areas of reliability and computing capacity. The use of

third generation computing concepts such as micro-program-

ing and multiprocessing for computational speed and fault tol-

erant computing concepts such as modular component design,

redundancy, and system reconfigurability has made the design

of future spaceborne computer systems no longer the relatively

simple task it once was. The Marshall Space Flight Center,

Huntsville, Alabama, is currently designing a complex avionics

computer for use in the late 1970's to mid 1980's time frame.

This system, the Automatically Reconfigurable Modular Multi-

processor System {ARMMS} {1), utilizes many of the above

mentioned concepts previously not available for spaceborne

systems. The ARMMS design goal is to meet the increased

reliability and computing requirements of future spaceborne

computer systems through a highly modular computer architec-

ture which can be configured as a multiprocessor for maximum

computing speed and as a duplex or triple modular redundant

(TMR) system with standby spares for extremely high reliability.

Moreover, the ARMMS will be dynamic in that it will be possible

to alter its configuration, in real time, as required by various
mission phases or events.
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One problem encountered by the ARMMS design group was to

determine an effective means for measuring the effect upon

system performance of the various design concepts being con-

sidered. Since some of these features (e.g., dynamic recon-

figuration) are new not only to avionics computers, but to com-

puter systems in general, there were no existing systems which

could provide performance data relevant to the ARMMS design.

This problem was resolved in part through the use of discrete

event simulation, a technique which has gained general accept-

ance for use in the design and evaluation of computer systems.

(Z, 3)

Areas of interest for the application of simulation ranged

from the instruction execution level to the simulation of the

scheduling algorithms of the ARMMS executive system. Due to

the high cost of computer time required to simulate all of these

activities in a single model, two different models were developed;

one which simulates the traffic between the central processing

units (CPU's) and central memory (CM) as instructions are

fetched and executed, and another which models the principal

algorithms of the executive system required for resource alloca-

tion and task dispatching. This paper describes the two models

and presents some results obtained from their application.

SYSTEM DESCRIPTION

The ARMMS design features a highly modular computer

architecture which allows the system hardware to be configured

according to the needs of individual tasks; highly critical tasks

will be executed in triple modular redundant (TMR) or duplex

mode while less critical tasks will be executed in simplex mode.

Sufficient system components will be available to allow the con-

current execution of more than one task and to provide spare

modules to replace certain critical system components in the

case of failures. Thus the ARMMS executive must not only

perform the functions required in a third generation multi-

processor system, but will also be charged with the tasks of

system configuration control and response to component fail-

ures. A hardware/ software complex, the Block Organizer and

System Scheduler (BOSS}, will perform these functions inARMN_.

ARMMS Hardware

The ARMMS hardware configuration is illustrated in Figure

1. Upto four central processing units (CPU' s) and four input/

output processors (IOP' s) will be active at any one time with

up to sixteen logical memory modules available for program
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instruction and data storage. A logical memory module con-

sists of one, two, or three physical modules depending on

whether the programs stored in the module are simplex, dup-

le_ or TMR.

Upon execution of a computational task, one, two, or three

CPU's will be assigned to process the task; again the number

depends on the status of the task (simplex, duplex, TMR). If a

task is critical enough to require redundant processing, multiple

copies of the task will be stored in a logical memory module and

the proper number of CPU's will execute the code in parallel with

the results being compared or voted upon as they are transferred

back to CM. Instructions fetched frorr[ CM are also compared or

voted upon before execution. Four busses are provided for trans-

ferring addresses and data to memory and four different busses

are provided for fetching instructions and data from memory.

This bus structure is illustrated in Figure 2 which shows the

ARMMS processor-memory interface. It is assumed that these

memory modules contain plated wire components with access

times of 300 ns and cycle times of 600 ns for read and 800-900 ns

for write accesses to memory. The processors themselves are

microprogrammable with a clock speed of 5 MHz. In order to

match the memory and processor speeds, a bus speed of 10 MHz

(twice the processor) is assumed.

Since the processors operate in a multiprocessing mode

memory conflicts can occur. Whenever two processors require

the same memory module, one will always have a higher priority.

However, once one processor obtains entrance into the memory

module, it cannot be preempted during that memory cycle time,

even by a processor of a higher priority.

ARMMS Software

In order to provide a fast, reliable, executive, the logic

in the ARMMS Control Executive System {ACES) is being kept

as simple as possible. The task scheduling and facility allo-

cation algorithms currently being considered for implementa-

tion are briefly described in the following paragraphs:

The following information about each task is required for

task scheduling and resource allocation:

1. Task criticality (simplex, duplex, or TMR).

X. Task priority (the number of levels to be determined).

3. Task type (full processing, limited processing, I/O).

4. Task start time.

The resources required by a task will be determined by its

criticality and type; full processing tasks require both CPU's

and IOPls, limited processing tasks require only CPU's and I/O

tasks require only IOPIs. The number of CPU's and/or IOPts
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allocated to a task is three for TMR, two for duplex and one for

simplex with all the resources required by a task being assigned

for the duration of its execution.

A fixed priority number is assigned to each task prior to an

ARMMS mission and is used as a basis for all internal schedulin I

and resource allocation. Internal priority generation by ACES

will be avoided if possible.

A limited processing task may be preempted during execu-

tion by a higher priority task if its preemption will yield suffi-

cient resources to place the higher priority task in execution.

Neither full processing tasks nor I/O tasks may be preempted

once they begin execution because of the problems associated

with the interruption of an I/O transmission.

Once ACES begins processing atask request, it cannot be

interrupted or preempted by another task request regardless of

the request type or the priority of the task issuing the request.

Task requests originating while ACES is busy will be queued on

a first-in-first-out basis. Tasks delayed due to insufficient

system resources will be filed in the facilities queue on the

basis of task priority.

The current ACES concept does not provide for the assign-

ing of deadlines to tasks in order to assure execution within a

certain time period. It will be the responsibility of the user to

assign task priorities and task start times in such a way that

task deadlines are met.

INSTRUCTION EXECUTION SIMULATION

One method that has been proposed to increase the ARMRAS

processor speed is to operate with an overlapped instruction

fetch. It has been estimated that the additional hardware re-

quired to implement this feature is less than five percent of

that which would be required for a non-overlapped processor.

Instruction overlap is accomplished by allowing the processor

to execute one instruction while the next instruction is being

fetched from memory. Figure 3 illustrates how an instruction

overlap is employed. It is apparent from this figure that the

processor speed and the memory speed should be comparable
in order to obtain the maximum benefit from instruction over-

lap. If one stream of the overlap is utilizing the processor (or

memory), then the other stream is prohibited from utilizing

that facility. The only exception to this rule is that the memor

port becomes free at a point approximately equal to two-thirds

of the memory cycle time, thus allowing the processor to tran_'

fer the next address to memory even though the memory modul

itself is still being utilized.
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Instruction Execution Simulation Model

A simulation model which simulates the major activities

involved in the execution of instructions by the ARMMS pro-

cessors was developed to study the speed advantage offered by

the instruction overlap features under different assumptions

pertaining to the type and mix of instruction being executed, the

degree of memory contention resulting from multiprocessing,

the internal CPU and memory speeds, etc.

A simplified flowchart of the basic model logic is shown in

Figure 4. This figure illustrates the primary and secondary

paths for the overlap instruction streams. Not shown inthis

figure are the various queue blocks that prevent the two streams

from both trying to utilize the same facility at the same time.

The model input parameters and output statistics are list-

ed below:

Model Input Parameters

I. System Description

A. Number of processors

B. Number of memory modules

C. Bus Speeds

D. Microprogram execution time

E. Memory characteristics

I. Cycle time (read and write)

Z. Time that input port is released

F. Instruction overlap (yes/no)

ll. Software Input Characteristics

A. Task description

i. Number of instructions

Z. Memory module where task is stored

B. Instruction description

I. Decode time

Z. Flag if second operand is required

3. Flag if jump type

4. Flag if read into memory is required

5. Execution time

C. Number of tasks to be executed

D. Relative distribution of instructions to be

executed.

Model Output Statistics

I. At the completion of each task

A. Task number

B. Memory module number

C. Instruction Overlap (yes/no)

D. Processor number

E. Total number of instructions executed
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F. Types and frequency of instructions executed

G. Task start and end time

H. Task execution time

I. Minimum non-overlap task execution time

J. Jump-caused aborts

K. Memory and processor interference

L. Average time (in percent) gained by utilizing

instruction overlap (if overlap is used).

Note that the model input parameters permit a detailed descrip-

tion of the characteristics of individual instructions. For the

purpose of evaluating the instruction overlap technique, only 15

instructions are described in this paper; Load, Store, Condi-

tional Jump, Unconditional Jump, Compare, Add, Subtract,

Multiply, Divide, Floating Point Add, Floating Point Subtract,

Floating Point Multiply, Floating Point Divide, And/Or. While

this is a relatively small number of instructions, it is felt that

these 15 instructions would comprise approximately 95 percent

of the instructions in a typical scientific program.

Simulation Re sults

Some typical simulation results are shown in Figures 5 and

6. The instructions used in these simulations were those men-

tioned in the preceding paragraph. Within each task the mix of

instructions we re distributed in a fashion which approximates

the Gibson mix (4).

Figure 5 shows a direct comparison between an overlapped

and non-overlapped instruction stream with various degrees of

memory conflict. This figure illustrates that an overlap in-

struction stream is about 37 percent faster than a non-overlap

instruction stream, if there is no memory contention. Hov_ever,

as more than one processor attempts to utilize the same memory

module, any advantage of instruction overlap is quickly forfeited.

Figure 6 depicts the results of running 15 tasks (6Z54 in-

structions) in a multiprocessing mode on four processors, with

and without instruction overlap. Nine memory modules were

assumed, and some degree of memory conflict was experienced.

As can be seen from this figure, the instruction overlap pro-

cessors consistently finished their tasks ahead of the non-over-

lap processors. This means that, with the same speed of in-

ternal components, the overlap instruction processors appear

to be over 30 percent faster than the non-overlap processors.

These results show that in general, the instruction overlap

feature can be expected to yield a significant improvement in

processor execution speed if a moderate amount of memory

contention is experienced. Only under severe memory conten-

tion does the single instruction stream processor speed approach

that of the processor with instruction overlap.
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EXECUTIVESYSTEMSIMULATION

A major factor to consider in evaluating the performance

of a computer system is the degree to which performance is

influenced by the system executive. This effect can often be

measured in an existing system by using hardware and/or

software monitors to gather statistics on variations in system

performance induced by changes in executive parameters or

algorithms. (5), (6). However, the problem of predicting the

effect on performance of an executive for a system being design-

ed requires that some other technique, such as simulation, be

employed. A simulation mode[ was developed to study the

ARMMS performance under various assumptions pertaining to

facility allocation procedures task priority schemes and the

time required by the BOSS hardware to execute ACES, the soft-

ware component of BOSS.

Executive Simulation Model

The major model components and the principal activities

simulated are illustrated in Figure 7. When simulated time

reaches atask start time, that task is created, its attributes are

assigned values, and it is entered into the system where it places

a request to be dispatched. When this request is acknowledged by

ACES (either immediately or after waiting in the EXEC queue if

another request is being processed), the dispatcher module

determine s whethe r:

I. Sufficient resources are available to place the task

in execution;

Z. Available resources plus resources obtained by

preempting lower priority tasks will meet the task

resource requirements; or

3. Neither I. or 2. is true.

The time increment T required for the dispatcher to

accomplish its function is calculated as a function of a number

of input parameters and the next event (initiate task after i. ,

preempt another task after 2. , place the task in the facilities

queue and process the next ACES request after 3.) is scheduled

at current time plus T.

If the dispatcher module determines that either I. or Z.

is true, ACES continues processing the current task until the

initiation module places the task in execution, at which time

the next ACES request will be honored. Once a task begins

execution, it will be interrupted only if it is a preemptable task

and is preempted by a higher priority task, in which case it is

placed back in the facilities queue to await another dispatch.

When atask completes execution, it requests that it be terminat-

ed by the terminator module; again the task request may be
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queued if the executiv_ is busy.

The principal inputs to the module are task attributes, the

number of CPU's and IOP's in the system, and timing data used

to determine how long the various ACES modules require to per-

form their functions. Random functions are used to produce the

task inter-arrival pattern and to assign the task attributes.

ACES timing data are based on the criticality and type of task

being processed and reflect the number of instructions which

must be executed to perform the ACES logic as well as the speed

of the BOSS hardware executing ACES. Module output consists

of utilization statistics for the CPU's , IOP's, and the major

ACES modules and statistics showing the average time spent in

the system for various classes of tasks.

Baseline Simulation

A baseline simulation was performed using instruction

execution estimates for the ACES timing as shown in Table 1.

Workload parameter values were based upon a mission analysis

profile of space missions for which the ARMMS would be a suit-

able onboard data processing system. (1) Instruction execution

estimates for ACES were obtained from flowcharts provided by

the software designer.

A number of deductions concerning the match between the

workload and the system as well as the relationship between

system performance and ACES can be drawo from the baseline

simulation statistics shown in Table Z. Note that the dispatcher

module was active almost 40% of the time, a factor influenced

by the average facility queue contents of more than 46. These

results suggest that a more efficient or faster dispatcher design

should be explored to accommodate large queue's for facilities.

Figure 8 graphically displays the average time spent in the

system, in excess of the average processing time, as a function

of task priority, criticality and type. Note that TMR tasks of

all types encountered the longest delays in the system with full

processing tasks being delayed longer than either limited pro-

¢essing or I/O tasks.

It is clear from the Task State Statistics (average number

of tasks in queue and average number of active tasks) that the

baseline system is inadequate for the workload being imposed

upon it. Based upon the average task inter-arrival time of two

milliseconds and the average task execution time of five milli-

seconds, an average of approximately 2.5 active tasks must be

maintained if the system is to accommodate the workload with-

out queue build-ups; approximately 15 percent more than the

2.Z1 average maintained inthe baseline simulation. The
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average CPU and lOP utilization maintained in the baseline in-

dicate that perhaps changing the ACES logic and/or speeding up

ACES execution would provide an adequate system without having

to increase system hardware. The following paragraphs discuss

a series of simulations designed to investigate system performance

improvement induced by such changes in ACES.

Other Simulation R e sult s

Some results from five simulations are presented in Table 3

where they are ranked in order of improvement over the base-

line simulation; improvement being measured as increase in the

average number of active tasks (or alternatively, as the decrease

in lapsed time for the simulation where lapsed time was measured

from the time the first run entered the system to the time the

last run terminated).

Run Priority Raised After 50 Milliseconds in System--In this

simulation, a simple deadline scheme was implemented in which

the priority of a task was incremented by ten if it had not been

dispatched within 50 milliseconds of its entry into the system.

The average number of active tasks rose to Z. 34, approximately

a six percent increase over the baseline, indicating that per-

haps a more sophisticated deadline scheme would yield additional

performance improvement. It was assumed that this deadline

scheme could be implemented without any increase in ACES over-

head, an assumption which might be unrealistic if a more sophis-
ticated scheme were used.

All EXEC Times Equal Zero--The purpose of this simulation was

to determine whether it was possible to speed up the executive to

such an extent that the workload could be accommodated, a test

accomplished by exercising a model option which sets all the

executive timing parameters to zero. Results from this simula-

tion show that, while system performance may possibly be im-

proved up to 7.7 percent by making ACES faster, this technique

alone will not give the performance improvement needed.

Priority a Function of Criticality--The graphs in Figure 8 show

that among the various task types the longest delays are en-

countered by low priority TMR tasks. In this simulation, a

priority scheme was implemented to see if special consideration

to TMR tasks would not only alleviate this condition, but would

increase overall system performance. Task priority in this

simulation was given by
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where

and

C _

P= P' + 10;:"C

P' is baseline priority

1 for simplex tasks

Z "for duplex tasks

3 for TMR tasks

This priority scheme not only improved system performance by

eight percent, but changed the task delay pattern to that shown

in Figure 9. It is not surprising that with this priority scheme

duplex tasks encounter the longest delays since a duplex task

cannot be executed if a TMR task (now having the highest priority)

is active but a simplex task can be executed.

Priority a Function of Criticality and EXEC Time Equal Zero--

This simulation combined the changes incorporated in the two

previous simulations and showed an improvement in performance

of approximately 13 percent, providing a system which was

adequate for processing the given workload. Admittedly this

simulation is unrealistic with respect to the zero executive

assumption, but it indicates that perhaps an optimum scheduling

strategy exist._ which, when combined with optimum executive

code, will allow the baseline hardware configuration to process

the baseline workload.

Five CPU's and Five IOP's--In this simulation, an additional

CPU and IOP were added to the system hardware to yield a

system which is more than adequate for the baseline workload

(note average queue contents and facility utilization). It is

interesting to note that even in this system, which has consider-

able slack resources, the pattern of delay by task type estab-

lished in the baseline simulation still prevails, although the

magnitudes of the delays are naturally smaller. This is illu-

strated in Figure I0 which shows that low priority TMR tasks,

especially full processing TMR tasks, still have significant

delays when compared to the other task types.

The results discussed in the preceding paragraphs led to

the following conclusions and recommendations pertaining to

the ACES design.

I. System performance is as sensitive to the ACES

logic as to the execution time of ACES.

Z. Full processing stream concept should be reviewed.

3. Some special consideration may be necessary when

scheduling TMR tasks.

240



4. If large queue build-up is anticipated in an ARMMS

mission, more efficient queue search logic than is

currently planned should be implemented.

5. Some sort of dynamic priority assignment or task

deadline scheme may be required to assure timely

completion of critical tasks.

The ACES designer concurred with recommendations 2. and 4. ,

dropping the full processing stream concept from the ACES

design and altering the queue search logic of the dispatcher to

provide a more efficient and quicker method for finding the

l_ighest priority dispatchable task.

CONC LUSIONS

Simulation has proved to be an effective means for evaluat-

ing both hardware and software design concepts being consider-

ed for the Automatically Reconfigurable Modular Multiprocessor

System (ARMMS}. The instruction execution model demonstrat-

ed that implementing an instruction fetch overlap feature in the

ARMMS processors could provide a significant improvement in

processor speed. Results obtained with the ARMMS executive

system simulation model identified areas in the system software

where changes would improve overall system performance.
These results would have been difficult to obtain without the use

of simulation.
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Fig° 1 - ARMMS Hardware Configuration

Figo 2 - Processor- Memory Interface
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PARAMETER iNSTRUCTIONS

NAME DESCRIPTION REQUIRED

TYPE

CPU

lOP

FCNK

PCHK

TABS

TABUP

CNFIG

MHPRI

INITM

RELOD

TERM

PRTM

TIME TO DETERMINE WHETHER FACILITIES

ARE AVAILABLE

TIME TO CHECK FOR POSSIBILITY OF

PREEMPTION

TIME TO f,EARCH FOR AVAILABLE

CONFIGURATION

TIME TO UPDATE TABLES AFTER FACILITY

ACQUISITION

TIME TO ESTABLISH

CONFIGURATION

TIME TO CALCU1.AT_ LOWEST PRIORITY TASIC

WHICH CAH PREEMPT

TIME TO INITIATE TASK

(FIRST DISPATCH)

TIME TO IHITIATE TASK WHICH HAS BEEN

PREEMPTED

TIME TO TERMINATE TASK

TiME TO PREEMPT TASK

Table 1- Executive Timing

0

0-4

24-96

210

S

0-30

S

3O

SS-&5

_arameters

Faci lity Usage_iatistics
NUMBER AVERAGE AVERAGE

USERS TIME/USE(MSEC) UTILIZATION (%)

3649 3.773 76.0

2_10 S. 101 ?LS

STATISTICSEXECUTIVEUSAGE

MODULIE HUMBER AVERAGE AVERAGE
USERS TIME/USE( _ SEC) UtTILIZATIOH (KS

DISPATCHER 70,573 25 39.7

PREEMPTOR 410 130 1.4

INITIATOR 2,487 21 1.2

TERMINATOR 2,000 RO 3.S

TASKSTATESTATISTICS

STATE MAXIMUM HUMBER AVERAGE AVERAGE TIME
COHTEHTS ENTRIES CONTENTS IN STATE (MSEC)

ACTIVE 6 2447 2,21 4,024

FACILITIES 132 U|30 44,,03 _.060

QUEUE

Table 2 -Statistical Summary of Baseline Run
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RUN DESCRIPTION

BASELINE

RUN PRiORiTY RAISED AFTER 50
MILLISECONDS IN SYSTEM

ALL EXEC TiME EQUAL ZERO

PRIORITY A FUNCTION OF CRiTiCALiTY

PRiORiTY A FUNCTION OF CRITICALITY
AND EXEC TIME EQUAL ZERO

$ CPU'S AND 5 lOtS

EXEC TiME LAPSED TiME

(SECONDS) (SECONDS)

2.074 4.$30

1.541 4.275

•0 ,I,303'

1.557 4.|96

•0 4,0O6

.]1119 3.M7

CPU/10P AVG. NO. AVG. NO.

UTILIZATIOM (%) ACTIVE IN QUEUE

76.0/'7S.5 2.2! 55.t

79.2/71.E 2.34 29.7

78,0/78.4 2.N 33.6

O0.F/l10.5 2.39 36.0

0;I.7,'112.,1 2.50 9.I

M.S/li.] m 2.51 2.4

Ta!-Ie 3 - Comparison of Simulator Run Statistics
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